
Running Kmeans Mapreduce code on Amazon AWS

Pseudo Code

Input: Dataset D, Number of clusters k

Output: Data points with cluster memberships

Step 1: for iteration = 1 to MaxIterations do

Step 2: Mapper: Read D and centroids from HDFS

Step 3: Mapper: Compute the distance between each point in D and each point in centroids

Step 4: Mapper Output: Key-value pairs with key as centroid id and value as data point id and

 distance between them

Step 5: Shuffle and Sort: Aggregate for each key (centroid)

Step 6: Reducer: Sort distances and associate data points to the nearest centroid

Step 7: Reducer: Recompute the centroids

Step 8: Reducer Output: Write centroids to HDFS

Step 9: end for

How to run the code

Tools Required

1. Amazon AWS Account

2. PuTTy Windows Client (to connect to Amazon EC2 instance)

3. PuTTYgen (to generate private key – this will be used in putty to connect to EC2 instance)

4. WinSCP (secury copy)

1. Setting up Amazon EC2 Instances

With 4 node clusters and minimum volume size of 8GB there would be an average $2 of

charge per day with all 4 running instances. You can stop the instance anytime to avoid the

charge, but you will loose the public IP and host and restarting the instance will create new

ones. You can also terminate your Amazon EC2 instance anytime and by default it will

delete your instance upon termination, so just be careful what you are doing.

1.1 Get Amazon AWS Account

http://aws.amazon.com/
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://winscp.net/eng/download.php

If you do not already have an account, please create a new one. Amazon EC2 comes with

eligible free-tier instances.

1.2 Sign In to AWS

Once login into Amazon Web Services website (http://aws.amazon.com) by clicking Sign In

to the Console

After successful signing in to AWS, click EC2

http://aws.amazon.com/

Then click Launch Instance

1.3 Select AMI

Under the Quick Start column on the left, click Community AMIs. search and select

Ubuntu Server 12.04 Server 64-bit OS

1.4 Select Instance Type

Select the micro instance and click on „Next: Configure Instance Details‟; on bottom right.

1.5 Configure Number of Instances

We are setting up 4 node Hadoop cluster, so please enter 4 as number of instances. Please

check Amazon EC2 free-tier requirements, you may setup 3 node cluster with < 30GB

storage size to avoid any charges. In production environment you want to have

SecondayNameNode as separate machine. Click on „Next: Add Storage‟; at bottom right.

1.6 Add Storage

Minimum volume size is 8GB. Change it to 20GB (since we can add upto 30GB in free tier)

and also change the volume type to “General Purpose (SSD)”. Click on „Next: Tag

Instance‟; at bottom right.

1.7 Instance Description

Give your instance name as “HadoopEC2MultiNodeCluster” and click on „Next: Configure

Security group‟; at bottom right.

1.8 Define a Security Group

Create a new security group, later on we are going to modify the security group and add

new rules which will allow seamless interaction between instances. Name it

„HadoopEC2SecurityGroup‟. Click Review and Launch at bottom right.

1.9 Launch Instance and Create Security Pair

Review and Launch Instance.

Amazon EC2 uses public–key cryptography to encrypt and decrypt login information.

Public–key cryptography uses a public key to encrypt a piece of data, such as a password,

then the recipient uses the private key to decrypt the data. The public and private keys are

known as a key pair.

Create a new keypair and give it a name “hadoopec2cluster” and download the keypair

(.pem) file to your local machine. Click Launch Instance

http://letsdobigdata.files.wordpress.com/2014/01/hadoopec2cluster_keypair.png
http://letsdobigdata.files.wordpress.com/2014/01/hadoopec2cluster_keypair.png

1.10 Launching Instances

Once you click “Launch Instance” 4 instance should be launched with “pending” state

Once in “running” state we are now going to rename the instance name as below.

1. HadoopNameNode (Master)

2. HadoopSecondaryNameNode

3. HadoopSlave1 (data node will reside here)

4. HaddopSlave2 (data node will reside here)

You can rename the instance by clicking by hovering on the name and clicking on the pen icon

showed next to it. Once renamed click on the tick mark.

Please note down the Instance ID, Public DNS/URL like (ec2-54-209-221-112.compute-

1.amazonaws.com) and Public IP for each instance for your reference. We will need it later

on to connect from Putty client. Also notice we are using “HadoopEC2SecurityGroup”.

http://letsdobigdata.files.wordpress.com/2014/01/launching_instance.png
http://letsdobigdata.files.wordpress.com/2014/01/running_instances.png
http://letsdobigdata.files.wordpress.com/2014/01/launching_instance.png
http://letsdobigdata.files.wordpress.com/2014/01/running_instances.png

Modify Security Group

You can use the existing group or create a new one. When you create a group with default

options it add a rule for SSH at port 22.In order to have TCP and ICMP access we need to

add 2 additional security rules. Add „All TCP‟, „All ICMP‟ and „SSH (22)‟ under the inbound

rules to “HadoopEC2SecurityGroup”. This will allow ping, SSH, and other similar commands

among servers and from any other machine on internet. Make sure to “Apply Rule changes”

to save your changes.

These protocols and ports are also required to enable communication among cluster

servers. As this is a test setup we are allowing access to all for TCP, ICMP and SSH and

not bothering about the details of individual server port and security.

Please note that without adding these rules, the instances in Hadoop cluster with default

security group won‟t be able to communicate between each other‟s.

http://letsdobigdata.files.wordpress.com/2014/01/public_dns_ip_instance_id.png

2. Setting up client access to Amazon Instances

Now, let‟s make sure we can connect to all 4 instances. For that we are going to use Putty

client. We are going setup password-less SSH access among servers to setup the cluster.

This allows remote access from Master Server to Slave Servers so Master Server can

remotely start the Data Node and Task Tracker services on Slave servers.

We are going to use downloaded hadoopec2cluster.pem file to generate the private key

(.ppk). In order to generate the private key we need Puttygen client. You can download the

putty and puttygen and various utilities in zip from here.

2.1 Generating Private Key

Let‟s launch PUTTYGEN client and import the key pair we created during launch instance

step – “hadoopec2cluster.pem”

Navigate to Conversions and “Import Key”

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://letsdobigdata.files.wordpress.com/2014/01/security_group_rule.png

Once you import the key you can enter passphrase to protect your private key or leave the

passphrase fields blank to use the private key without any passphrase. But for now leave it

blank. Passphrase protects the private key from any unauthorized access to servers using

your machine and your private key.

http://letsdobigdata.files.wordpress.com/2014/01/import_key.png
http://letsdobigdata.files.wordpress.com/2014/01/load_private_key.png
http://letsdobigdata.files.wordpress.com/2014/01/import_key.png
http://letsdobigdata.files.wordpress.com/2014/01/load_private_key.png

Any access to server using passphrase protected private key will require the user to enter

the passphrase to enable the private key enabled access to AWS EC2 server.

2.2 Save Private Key

Now save the private key by clicking on “Save Private Key” and click “Yes” as we are going

to leave passphrase empty.

Save the .ppk file and give it the same name.

Now we are ready to connect to our Amazon Instance Machine for the first time.

2.3 Connect to Amazon Instance

Let‟s connect to HadoopNameNode first. Launch Putty client, grab the public URL (the DNS

ec2-….-amazonaws.com from the console step 1.10), import the .ppk private key that we

just created for password-less SSH access. As per amazon documentation, for Ubuntu

machines username is “ubuntu”

2.3.1 Provide private key for authentication

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
http://letsdobigdata.files.wordpress.com/2014/01/save_ppk_file.png

2.3.2 Hostname and Port and Connection Type

Host name will be like “Ubuntu@ec2-.......compute-1.amazonaws.com”

Click “Open” to launch putty session.

http://letsdobigdata.files.wordpress.com/2014/01/connect_to_hadoopnamenode3.png
http://letsdobigdata.files.wordpress.com/2014/01/connect_to_hadoopnamenode3.png

When you launch the session first time, you will see below message, click “Yes”

If everything goes well you will be presented welcome message with Unix shell at the end.

If there is a problem with your key, you may receive below error message. Check manual

again and eradicate the error.

http://letsdobigdata.files.wordpress.com/2014/01/connect_to_hadoopnamenode.png
http://letsdobigdata.files.wordpress.com/2014/01/connect_to_hadoopnamenode.png

Similarly connect to remaining 3 machines HadoopSecondaryNameNode, HaddopSlave1

and HadoopSlave2 respectively to make sure you can connect successfully.

2.4 Enable Public Access
Issue ifconfig command in the terminal and note down the ip address. Next, we are going to

update the hostname with ec2 public URL and finally we are going to update /etc/hosts file to

map the ec2 public URL with ip address. This will help us to configure master and slaves

nodes with hostname instead of ip address.

Following is the output on HadoopNameNode ifconfig

http://letsdobigdata.files.wordpress.com/2014/01/putty_error_message.png
http://letsdobigdata.files.wordpress.com/2014/01/4_connnected_amazon_instances.png
http://letsdobigdata.files.wordpress.com/2014/01/putty_error_message.png
http://letsdobigdata.files.wordpress.com/2014/01/4_connnected_amazon_instances.png

This IP is same as what we have in the console

Now, issue the hostname command, it will display the ip address same as inet address from

ifconfig command.

We need to modify the hostname to ec2 public URL with below command

~$ sudo hostname ec2…….compute-1.amazonaws.com (Please put the URL which you got)

http://letsdobigdata.files.wordpress.com/2014/01/ifconfig.png
http://letsdobigdata.files.wordpress.com/2014/01/host_name_ip_address_mapping.png
http://letsdobigdata.files.wordpress.com/2014/01/hostname_by_ip.png
http://letsdobigdata.files.wordpress.com/2014/01/ifconfig.png
http://letsdobigdata.files.wordpress.com/2014/01/host_name_ip_address_mapping.png
http://letsdobigdata.files.wordpress.com/2014/01/hostname_by_ip.png
http://letsdobigdata.files.wordpress.com/2014/01/ifconfig.png
http://letsdobigdata.files.wordpress.com/2014/01/host_name_ip_address_mapping.png
http://letsdobigdata.files.wordpress.com/2014/01/hostname_by_ip.png

2.5 Modify /etc/hosts

Let‟s change the host to EC2 public IP and hostname.

Open the /etc/hosts in „VI‟ with “sudo vi /etc/hosts” command, in a very first line it will show

127.0.0.1 localhost, we need to replace that with amazon ec2 hostname and ip address we

just collected.

Modify the file and save your changes. To save a file you need to type the following

sequence

1. Esc , to quit edit mode and fallback to command mode

2. :wq , start with a colon and then press w and q to write and quit

3. Then press Enter to validate.

http://letsdobigdata.files.wordpress.com/2014/01/update_hostname.png
http://letsdobigdata.files.wordpress.com/2014/01/open_etc_hosts_in_vi.png
http://letsdobigdata.files.wordpress.com/2014/01/update_hostname.png
http://letsdobigdata.files.wordpress.com/2014/01/open_etc_hosts_in_vi.png

Repeat 2.3 and 2.4 sections for remaining 3 machines.

3. Setup WinSCP access to EC2 instances

In order to securely transfer files from your windows machine to Amazon EC2 WinSCP is a

handy utility.

Provide hostname, username and private key file and save your configuration and Login

(Same credentials which were used for putty login)

http://winscp.net/download/winscp554setup.exe
http://letsdobigdata.files.wordpress.com/2014/01/modify_vi_hosts.png

If you see above error, just ignore and you upon successful login you will see unix file

system of a logged in user /home/ubuntu your Amazon EC2 Ubuntu machine.

http://letsdobigdata.files.wordpress.com/2014/01/winscp.png
http://letsdobigdata.files.wordpress.com/2014/01/winscp_error.png
http://letsdobigdata.files.wordpress.com/2014/01/winscp.png
http://letsdobigdata.files.wordpress.com/2014/01/winscp_error.png

Upload the .pem file to master machine (HadoopNameNode). It will be used while

connecting to slave nodes during hadoop startup daemons.

1. Apache Hadoop Installation and Cluster Setup
1.1 Update the packages and dependencies.

Let‟s update the packages, I will start with master, repeat this for SecondaryNameNode and 2

slaves.

Open the connection to the MatserNode using the steps provided in „2.3 Connect to Amazon

Instance‟

Type the following in the opened terminal

$ sudo apt-get update

Once it‟s complete, let‟s install java

1.2 Install Java

Add following PPA and install the latest Oracle Java (JDK) 7 in Ubuntu

http://letsdobigdata.files.wordpress.com/2014/01/winscp_view.png

$ sudo add-apt-repository ppa:webupd8team/java

Then type

$ sudo apt-get update && sudo apt-get install oracle-jdk7-installer

Check if Ubuntu uses JDK 7

Type:

$ java –version

The response should be like this

Repeat this for SNN and 2 slaves.

 1.3 Download Hadoop

I am going to use haddop 1.2.1 stable version from apache download page and here is the 1.2.1

mirror

Issue wget command from shell

$ wget http://apache.mirror.gtcomm.net/hadoop/common/hadoop-1.2.1/hadoop-1.2.1.tar.gz

http://hadoop.apache.org/releases.html#Download
http://apache.mirror.gtcomm.net/hadoop/common/hadoop-1.2.1/
http://apache.mirror.gtcomm.net/hadoop/common/hadoop-1.2.1/
http://apache.mirror.gtcomm.net/hadoop/common/hadoop-1.2.1/hadoop-1.2.1.tar.gz
http://letsdobigdata.files.wordpress.com/2014/01/java_installaation.png

Unzip the files and review the package content and configuration files.

$ tar -xzvf hadoop-1.2.1.tar.gz

For simplicity, rename the „hadoop-1.2.1‟ directory to „hadoop‟ for ease of operation and

maintenance.

$ mv hadoop-1.2.1 hadoop

1.4 Setup Environment Variable

Setup Environment Variable for „ubuntu‟ user

Update the .bashrc file to add important Hadoop paths and directories.

Navigate to home directory

$ cd

http://letsdobigdata.files.wordpress.com/2014/01/download_hadoop.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing_2.png
http://letsdobigdata.files.wordpress.com/2014/01/download_hadoop.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing_2.png
http://letsdobigdata.files.wordpress.com/2014/01/download_hadoop.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing.png
http://letsdobigdata.files.wordpress.com/2014/01/dir_listing_2.png

Open .bashrc file in vi edit

$ vi .bashrc

Add following at the end of file

export HADOOP_CONF=/home/ubuntu/hadoop/conf

export HADOOP_PREFIX=/home/ubuntu/hadoop

#Set JAVA_HOME

export JAVA_HOME=/usr/lib/jvm/java-7-oracle

Add Hadoop bin/ directory to path

export PATH=$PATH:$HADOOP_PREFIX/bin

Save and Exit by pressing escape and typing „:wq‟ and enter to validate.

To check whether it has been updated correctly or not, reload bash profile, use following

commands

$ source ~/.bashrc

By typing the following two commands, there should be some value which should come up

$ echo $HADOOP_PREFIX

$ echo $HADOOP_CONF

Repeat 1.3 and 1.4 for remaining 3 machines (SNN and 2 slaves).

1.5 Setup Password-less SSH on Servers

Master server remotely starts services on salve nodes, which requires password-less

access to Slave Servers. AWS Ubuntu server comes with pre-installed OpenSSh server.

Quick Note:

The public part of the key loaded into the agent must be put on the target system in

~/.ssh/authorized_keys. This has been taken care of by the AWS Server creation process

Now we need to add the AWS EC2 Key Pair identity „HaddopEc2cluster.pem‟ to SSH

profile. In order to do that we will need to use following ssh utilities

 „ssh-agent‟ is a background program that handles passwords for SSH private keys.

 „ssh-add‟ command prompts the user for a private key password and adds it to the list

maintained by ssh-agent. Once you add a password to ssh-agent, you will not be asked to

provide the key when using SSH or SCP to connect to hosts with your public key.

Amazon EC2 Instance has already taken care of „authorized_keys‟ on master server,

execute following commands to allow password-less SSH access to slave servers.

First of all we need to protect our keypair files, if the file permissions are too open (see

below) you will get an error

To fix this problem, we need to issue following commands

$ chmod 644 authorized_keys

Quick Tip: If you set the permissions to „chmod 644′, you get a file that can be written by

you, but can only be read by the rest of the world.

$ chmod 400 haddoec2cluster.pem

Quick Tip: chmod 400 is a very restrictive setting giving only the file onwer read-only

access. No write / execute capabilities for the owner, and no permissions what-so-ever for

anyone else.

To use ssh-agent and ssh-add, follow the steps below:

1. At the Unix prompt, enter: eval `ssh-agent`

Note: Make sure you use the backquote (`), located under the tilde (~), rather than

the single quote (').

2. Enter the command: „ssh-add hadoopec2cluster.pem‟. Make sure you are in the directory

where this .pem file is.

http://letsdobigdata.files.wordpress.com/2014/01/ssh_error1.png

It should work this time.

Keep in mind ssh session will be lost upon shell exit and you have repeat ssh-agent

and ssh-add commands.

Remote SSH

Let‟s verify that we can connect into SNN and slave nodes from master

$ ssh ubuntu@<your-amazon-ec2-public URL for SNN or any of your slave nodes>

On successful login the IP address on the shell will change.

Type the following to exit from SNN or other nodes and to come back to the master node.

$ exit

http://letsdobigdata.files.wordpress.com/2014/01/ssh_success.png
http://letsdobigdata.files.wordpress.com/2014/01/ssh_remote_connection.png
http://letsdobigdata.files.wordpress.com/2014/01/ssh_success.png
http://letsdobigdata.files.wordpress.com/2014/01/ssh_remote_connection.png

1.6 Hadoop Cluster Setup

This section will cover the hadoop cluster configuration. We will have to modify

 hadoop-env.sh - This file contains some environment variable settings used by Hadoop.

You can use these to affect some aspects of Hadoop daemon behavior, such as where log

files are stored, the maximum amount of heap used etc. The only variable you should need

to change at this point is in this file is JAVA_HOME, which specifies the path to the Java

1.7.x installation used by Hadoop.

 core-site.xml – key property fs.default.name – for namenode configuration for

e.g hdfs://namenode/

 hdfs-site.xml – key property - dfs.replication – by default 3

 mapred-site.xml - key property mapred.job.tracker for jobtracker configuration for

e.g jobtracker:8021

We will first start with master (NameNode) and then copy above xml changes to remaining

3 nodes (SNN and slaves)

Finally, in section 1.6.2 we will have to configure conf/masters and conf/slaves.

 masters - defines on which machines Hadoop will start secondary NameNodes in our multi-

node cluster.

 slaves - defines the lists of hosts, one per line, where the Hadoop slave daemons

(datanodes and tasktrackers) will run.

Lets go over one by one. Start with masters (namenode).

Perform the following

hadoop-env.sh

$ vi $HADOOP_CONF/hadoop-env.sh and add JAVA_HOME shown below and save

changes.

core-site.xml

This file contains configuration settings for Hadoop Core (for e.g I/O) that are common to

HDFS and MapReduce Default file system configuration property – fs.default.name goes

here it could for e.g hdfs / s3 which will be used by clients.

$ sudo vi $HADOOP_CONF/core-site.xml

We are going to add two properties

 fs.default.name will point to NameNode URL and port (usually 8020)

 hadoop.tmp.dir - A base for other temporary directories. Its important to note that every

node needs hadoop tmp directory. I am going to create a new directory “hdfstmp” as below

in all 4 nodes. Ideally you can write a shell script to do this for you, but for now going the

manual way.

 Perform the following

Exit from core-site.xml

Then

$ cd

$ mkdir hdfstmp

Quick Tip: Some of the important directories are dfs.name.dir, dfs.data.dir in hdfs-

site.xml. The default value for

the dfs.name.dir is ${hadoop.tmp.dir}/dfs/data and dfs.data.dir is${hadoo

p.tmp.dir}/dfs/data. It is critical that you choose your directory location wisely in

production environment.

Fill the following in the $HADOOP_CONF/core-site.xml

http://letsdobigdata.files.wordpress.com/2014/01/hadoop_env-sh.png

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://ec2-54-209-221-112.compute-1.amazonaws.com:8020</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/home/ubuntu/hdfstmp</value>

</property>

</configuration>

Save and Exit

hdfs-site.xml

This file contains the configuration for HDFS daemons, the NameNode,

SecondaryNameNode and data nodes.

We are going to add 2 properties

 dfs.permissions.enabled with value false, This means that any user, not just the “hdfs”

user, can do anything they want to HDFS so do not do this in production unless you have a

very good reason. if “true”, enable permission checking in HDFS. If “false”, permission

checking is turned off, but all other behavior is unchanged. Switching from one parameter

value to the other does not change the mode, owner or group of files or directories. Be very

careful before you set this

 dfs.replication – Default block replication is 3. The actual number of replications can be

specified when the file is created. The default is used if replication is not specified in create

time. Since we have 2 slave nodes we will set this value to 2.

Perform the following

$ sudo vi $HADOOP_CONF/ hdfs-site.xml

Fill it with the following

<configuration>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.permissions</name>

<value>false</value>

</property>

</configuration>

Save and exit

mapred-site.xml

This file contains the configuration settings for MapReduce daemons; the job tracker and

the task-trackers.

The mapred.job.tracker parameter is a hostname (or IP address) and port pair on which the

Job Tracker listens for RPC communication. This parameter specify the location of the Job

Tracker for Task Trackers and MapReduce clients.

JobTracker will be running on master (NameNode)

Perform the following

$ sudo vi $HADOOP_CONF/mapred-site.xml

Fill it with the following

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>hdfs://ec2-54-209-221-112.compute-1.amazonaws.com:8021</value>

</property>

</configuration>

Save and Exit

http://letsdobigdata.files.wordpress.com/2014/01/hdfs-site.png

1.6.1 Move configuration files to Slaves

Now, we are done with hadoop xml files configuration master, lets copy the files to

remaining 3 nodes using secure copy (scp)

start with SNN, if you are starting a new session, follow ssh-add as per section 1.5

from master‟s unix shell issue below command

$ scp hadoop-env.sh core-site.xml hdfs-site.xml mapred-site.xml ubuntu@<URL of your

Secondary Name node>:/home/ubuntu/hadoop/conf

Repeat this for slave nodes and check if they got copied in all the nodes

1.6.2 Configure Master and Slaves

Every hadoop distribution comes with master and slaves files. By default it contains one

entry for localhost, we have to modify these 2 files on both “masters” (HadoopNameNode)

and “slaves” (HadoopSlave1 and HadoopSlave2) machines – we have a dedicated machine

for HadoopSecondaryNamdeNode.

http://letsdobigdata.files.wordpress.com/2014/01/scp_configurations.png

1.6.3 Modify masters file on Master machine

conf/masters file defines on which machines Hadoop will start Secondary NameNodes in

our multi-node cluster. In our case, there will be two machines HadoopNameNode and

HadoopSecondaryNameNode

Hadoop HDFS user guide : “The secondary NameNode merges the fsimage and the edits

log files periodically and keeps edits log size within a limit. It is usually run on a different

machine than the primary NameNode since its memory requirements are on the same order

as the primary NameNode. The secondary NameNode is started by “bin/start-dfs.sh“ on the

nodes specified in “conf/masters“ file.“

Perform the following

$ vi $HADOOP_CONF/masters and provide an entry for the hostename where you want to

run SecondaryNameNode daemon. In our case HadoopNameNode and

HadoopSecondaryNameNode

1.6.4 MODIFY THE SLAVES FILE ON MASTER MACHINE

The slaves file is used for starting DataNodes and TaskTrackers

$ vi $HADOOP_CONF/slaves

https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html#Secondary+NameNode
http://letsdobigdata.files.wordpress.com/2014/01/masters_slaves.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_file.png
http://letsdobigdata.files.wordpress.com/2014/01/m11.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_config.png
http://letsdobigdata.files.wordpress.com/2014/01/masters_slaves.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_file.png
http://letsdobigdata.files.wordpress.com/2014/01/m11.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_config.png
http://letsdobigdata.files.wordpress.com/2014/01/masters_slaves.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_file.png
http://letsdobigdata.files.wordpress.com/2014/01/m11.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_config.png
http://letsdobigdata.files.wordpress.com/2014/01/masters_slaves.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_file.png
http://letsdobigdata.files.wordpress.com/2014/01/m11.png
http://letsdobigdata.files.wordpress.com/2014/01/slaves_config.png

1.6.5 Copy masters and slaves to SecondaryNameNode

Since SecondayNameNode configuration will be same as NameNode, we need to copy

master and slaves to HadoopSecondaryNameNode.

1.6.7 CONFIGURE MASTER AND SLAVES ON “SLAVES” NODE

Since we are configuring slaves (HadoopSlave1 & HadoopSlave2), masters file on slave

machine is going to be empty

$ vi $HADOOP_CONF/masters

Next, update the „slaves‟ file on Slave server (HadoopSlave1) with the IP address of the

slave node. Notice that the „slaves‟ file at Slave node contains only its own IP address and

not of any other Data Node in the cluster.

$ vi $HADOOP_CONF/slaves

http://letsdobigdata.files.wordpress.com/2014/01/copy_master_slaves1.png
http://letsdobigdata.files.wordpress.com/2014/01/master_file_on_slaves.png
http://letsdobigdata.files.wordpress.com/2014/01/copy_master_slaves1.png
http://letsdobigdata.files.wordpress.com/2014/01/master_file_on_slaves.png

Similarly update masters and slaves for HadoopSlave2

1.7 Hadoop Daemon Startup

The first step to starting up your Hadoop installation is formatting the Hadoop filesystem

which is implemented on top of the local filesystems of your cluster. You need to do this the

first time you set up a Hadoop installation. Do not format a running Hadoop filesystem,

this will cause all your data to be erased.

To format the namenode

Goto Namenode(master node) and perform the following

$ hadoop namenode -format

http://letsdobigdata.files.wordpress.com/2014/01/slaves_file_on_slave.png

Lets start all hadoop daemons from HadoopNameNode

$ cd $HADOOP_CONF

$ start-all.sh

This will start

 NameNode,JobTracker and SecondaryNameNode daemons on HadoopNameNode

http://letsdobigdata.files.wordpress.com/2014/01/namenode_format.png

 SecondaryNameNode daemons on HadoopSecondaryNameNode

 and DataNode and TaskTracker daemons on slave

nodes HadoopSlave1 and HadoopSlave2

http://letsdobigdata.files.wordpress.com/2014/01/strat-all.png
http://letsdobigdata.files.wordpress.com/2014/01/snn.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-38-am.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-56-am.png
http://letsdobigdata.files.wordpress.com/2014/01/strat-all.png
http://letsdobigdata.files.wordpress.com/2014/01/snn.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-38-am.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-56-am.png
http://letsdobigdata.files.wordpress.com/2014/01/strat-all.png
http://letsdobigdata.files.wordpress.com/2014/01/snn.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-38-am.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-56-am.png
http://letsdobigdata.files.wordpress.com/2014/01/strat-all.png
http://letsdobigdata.files.wordpress.com/2014/01/snn.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-38-am.png
http://letsdobigdata.files.wordpress.com/2014/01/screen-shot-2014-01-13-at-9-59-56-am.png

We can check the namenode status from http://ec2-54-209-221-112.compute-

1.amazonaws.com:50070/dfshealth.jsp

Check Jobtracker status : http://<Your AMAZON MASTER URL>:50030/jobtracker.jsp

http://ec2-54-209-221-112.compute-1.amazonaws.com/
http://ec2-54-209-221-112.compute-1.amazonaws.com/
http://letsdobigdata.files.wordpress.com/2014/01/namenode_stattus.png
http://letsdobigdata.files.wordpress.com/2014/01/jobtracker_status.png
http://letsdobigdata.files.wordpress.com/2014/01/namenode_stattus.png
http://letsdobigdata.files.wordpress.com/2014/01/jobtracker_status.png

Slave Node Status for HadoopSlave1 : http://<YOUR AMAZON MASTER

URL>:50060/tasktracker.jsp

Slave Node Status for HadoopSlave2 : http://ec2-54-209-219-2.compute-

1.amazonaws.com:50060/tasktracker.jsp

http://ec2-54-209-219-2.compute-1.amazonaws.com/
http://ec2-54-209-219-2.compute-1.amazonaws.com/
http://letsdobigdata.files.wordpress.com/2014/01/tasktracker1_status.png
http://letsdobigdata.files.wordpress.com/2014/01/tasktracker2_status.png
http://letsdobigdata.files.wordpress.com/2014/01/tasktracker1_status.png
http://letsdobigdata.files.wordpress.com/2014/01/tasktracker2_status.png

Running The Code:
Browse the MapReduce_Kmeans directory and locate the following files

MapRedKMeans.jar, data.txt, centroids.

Step 1: Create folders in HDFS

 hadoop fs -mkdir /user/ubuntu/data

 hadoop fs -mkdir /user/ubuntu/clusters

Step 2: From PuTTy change the current directory to MapReduce_Kmeans and use

the following commands to copy the files from local disk to HDFS

 hadoop fs -copyFromLocal data.txt /user/ubuntu/data

 hadoop fs -copyFromLocal centroids.txt /user/ubuntu/clusters

Step 3: Run the Hadoop jar file with following command

 hadoop jar MapRedKMeans.jar KMeans /user/ubuntu/data

/user/ubuntu/clusters 3

This command will run Kmeans algorithm for three iterations.

Note: We are providing the data file and the centroids fie separately. The

centroids.txt file can be generated from data file by randomly sampling. In our

experiment, to keep consistency across all the platforms we select first k rows as

centroids.

Step 4: Checking the resultant centroids after Kmeans completion. Each iteration

will create a folder in HDFS named clusterX where X is the number of iteration.

For example, after running Kmeans with the above command, we can view the

contents with the following command

 Hadoop fs –cat /user/ubuntu/clusters/clusters2/part-r-00000

Or, we can download the resultant folder to our local disk with the following

command

 Hadoop fs –copyToLocal /user/ubuntu/clusters2 /home/Ubuntu/

Stopping the Hadoop Daemon

$ cd $HADOOP_CONF

$ stop-all.sh

Cleanup (Important)
Step 1: Logon to Amazon AWS and under Services select „Ec2‟.

Step 2: Under the „Instances‟ tab in the left column; click on „Instances‟.

Step 3: Locate all your Hadoop instances and select them. On the top locate „Actions‟ drop down

button and click „Stop‟ to stop the instances. You can start it and connect to the same settings

whenever you want. If you terminate it, you have to create a new instance all together.

Caveats

When you stop and restart the amazon instances, the Public IP and the URL of the

instances changes. You have to make changes in the following with the new URLs

1. hostname

2. Step 2.3.2

3. /etc/hosts

4. $HADOOP_CONF/ core-site.xml

5. $HADOOP_CONF/ core-site.xml

6. $HADOOP_CONF/ masters

7. $HADOOP_CONF/ slaves

8. Repeat Step 1.5

9. No need to format the namenode

10. Start the Hadoop daemon

